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The distinct term of the van Hove function G(r, t) is approximated by a 
Vineyard type convolution approximation. The convolution is made with a 
certain "se l f"  correlation function G~a(r, t) generated by dynamics of pairs 
of particles. This Qd (r, t) function accounts partly for cross correlation and 
thus improves the results achievable by the convolution with the pure self 
term of G(r, t). The results computed by the present method are compared 
with molecular dynamics data at two liquid-like densities. Good agreement 
is found for the intermediate range of wave vectors. The approximation is 
recommended, in particular, for purposes of Fourier transformation. 
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Introduction 

The dynamic structure factor S(k, to) is the Fourier transform of the van Hove 
function G(r, t) with respect to space and time. G(r, t) consists of a self term 
G~(r, t) which is to a very good approximation represented by a Gauss function 
and a distinct term Ga (r, t) accessible by molecular dynamics calculations (MDC) 
for simple fluids. So in principle one can provide the dynamic structure factor 
on this route via double Fourier inversion of the time dependent pair correlation 
function G(r, t). However, practically neither the Fourier transformation with 
respect to space nor that with respect to time can be performed reliably due to 
the relatively small (r, t) range available by computer simulations according to 
the smallness of the N-particle system [1]. To remove the problems at least for 
the space dependence of  G(r, t), one could use the Vineyard approximation [2] 
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for Gd which involves a convolution of Gs with the static pair correlation function 
g(r). As we restrict our discussion to a simple isotropic liquid in the following, 
we replace the vector variable dependence of the considered correlation functions 
by the dependence on the separation only. The static pair correlation function 
g(r) is today easily determinable up to large separations using various, very 
accurate extension procedures for MD results or perturbational techniques [3, 4, 
5]. Consequently the use of the Vineyard convolution would lead to a "long 
range" Gd(r, t) function and together with a Gaussian Gs(r, t) a reasonable 
Fourier inversion of G(r, t) would result. 

Unfortunately, the Vineyard approximation does not give good results for Ga, 
as Rahman has shown by MDC [6]. Rahman has empirically found an improved 
convolution approximation for Ga, but this is not very simple, has not been tested 
at different thermodynamic states and is physically not plausible [7]. In view of 
this, we propose a simple convolution approximation which is physically reason- 
able and can advantageously be used for Gal. 

2. The calculations 

We have carried out conventional MDC with a 500 particle system at two 
thermodynamic states using the interaction potential commonly employed to 
simulate liquid argon [8]. The details of the calculations, the thermodynamic 
states and the Lennard-Jones (12-6) potential parameters have been summarized 
in Table 1. For  the chosen thermodynamic states, we have determined the 
following correlation functions with a statistical error of 1%-5%. 

(i) Mean square displacement of particles (MSD); 
(ii) MSD of pairs of particles (MSDP); 
(iii) cross term of the MSDP (CTP); 
(iv) static pair correlation function (PCF); 
(v) dynamic PCF (distinct term) at 15 time points. 

The method of calculating accurately the MSDP and CTP has been discussed at 
length in [9] and ought not to be reported again. 

Numerical values for the MSDP and the CTP are listed in Table 2. Plots of the 
MSDP are presented in Fig. 1. 

Extension of g(r) has been achieved using the Baxter technique which is known 
to reproduce g(r) at large r within an accuracy of 1% [4]. 

The Fourier transforms were obtained by the method of "fast Fourier transforma- 
tion" (FFT) exploiting spline functions. 

3. Results for the Vineyard approximation 

The MD results for Ga(r, t) obtained by Rahman [6] are not very accurate and 
exist solely for three points. From the figures displayed in that work, we conclude 
that the statistical error for Gd amounts to about 10%. So we have recalculated 
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Table 1 

A. Details of the MD computations 

NVEp 
St~rmer-Veflet 
500 
10-14 s 
2500 
4000 
2.5~ 
liquid like 

Ensemble 
Integration 
Number of particles 
Time step 
Number of time steps for equilibration 
Number of time steps for production 
Cutoff radius 
Starting configurations 
CPU-time per 100 steps 

(Cyber 205 vector processor) 4.1 s 

B. Thermodynamic states 

State point 
1 2 

Temperature 107.6 K 95.2 K 
Density ~ 1.306 gcm -3 1.356 g cm -3 
Pressure 10 M Pa 0.5 M Pa 
Potential energy 5.46 kJ tool -1 5.76 kJ tool -1 

C. Lennard-Jones (12-6) potential parameters 

= 0.3405 nm 
e/k~, b = 119.8 K 

a Mass 39.95 a.u. 
b Boltzmann constant 

these  cor re la t ion  func t ions  for  10 different  t ime poin ts  cover ing the range  o f  1 ps. 
We  show the t ime-evo lu t ion  of  the  first and  the second  m a x i m u m  of  Gd norma l i zed  

by  g(r) in Fig. 2. This figure also conta ins  the results  for  the  Vineyard  a p p r o x i m a -  
t ion given by  the fo l lowing  convolu t ion  integral :  

Gr iN(r ,  t)= f g(r')Gs(r-r' ,  t) dr', (1) 

g ( r )  be ing  the M D  gene ra t ed  P C F  and Gs(r,  t) the self  te rm of  the  van  Hove  
funct ion .  Gs(r, t) was a p p r o x i m a t e d  by a G a u s s i a n  te rm [7]: 

(2) u~ ~r, t ) =  exp g(r , )  

where  ( r  2) deno tes  the  M S D  at t ime t which  was also de t e rmine d  by  MD.  

C o m p a r i s o n  o f  bo th  curves shows clear ly  the  fa i lure  o f  the Vineyard  a p p r o x i m a -  
t ion  at shor t  t imes,  for  which  it predic ts  a too  r a p i d  t ime decay.  F o r  la rger  t imes,  
the curves are  only  shi f ted  with respect  to the o rd ina te  ind ica t ing  that  the  
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Table 2. Numerical values for the MSDP and the CTP 

R. Vogelsang and C. Hoheisel 

A. MSDP (state point 1) B, CTP (state point 1) 

t/lO -2ps (s2)/h 2 t/lO -2ps (S2)/A 2 t/lO -2ps (s2)/A 2 t/lO -2ps (s2)/l~ ~ 

5 0.0 10 0.17 5 0.0 10 0.0 
15 0.33 20 0.51 15 0.0 20 0.0 
25 0.71 30 0.91 25 0.01 30 0.02 
35 1.13 40 1.32 35 0.04 40 0.05 
45 1.52 50 1.71 45 0.07 50 0.08 
55 1.91 60 2.11 55 0.10 60 0.12 
65 2.30 70 2.50 65 0.14 70 0.16 
75 2.68 80 2.85 75 0,18 80 0.20 
85 3.03 90 3.23 85 0.22 90 0.24 
95 3.40 100 3.58 95 0.26 100 0.28 

105 3.77 110 3.94 105 0.30 110 0.31 
115 4.12 120 4.31 115 0.33 120 0.35 
125 4.48 130 4.66 125 0.37 130 0.39 
135 4.84 140 5.01 135 0.41 140 0.43 
145 5.20 150 5.38 145 0.45 150 0.47 
155 5.56 160 5.72 155 0.49 160 0.51 
165 5.91 170 6.08 165 0.52 170 0.54 
175 6.27 180 6.45 175 0.56 180 0.58 
185 6.64 190 6.81 185 0.60 190 0.62 
195 7.00 200 7.18 195 0.64 200 0.66 

C. MSDP (state point 2) D. CTP (state point 2) 

5 0.05 10 0.17 5 0.0 10 0.0 
15 0.29 20 0.45 15 0.0 20 0.0 
25 0.62 30 0.80 25 0.01 30 0.02 
35 1.00 40 1.17 35 0.03 40 0.04 
45 1.33 50 1.49 45 0.06 50 0.08 
55 1.63 60 1.77 55 0.09 60 0.11 
65 1.92 70 2.07 65 0.12 70 0.12 
75 2.21 80 2.35 75 0.15 80 0.17 
85 2.48 90 2.62 85 0.19 90 0.20 
95 2.76 100 2.90 95 0.22 100 0.24 

105 3.03 110 3.16 105 0.25 110 0.27 
115 3.29 120 3.42 115 0.28 120 0.30 
125 3.55 130 3.68 125 0.31 130 0.33 
135 3.81 140 3.95 135 0.35 140 0.36 
145 4.09 150 4.23 145 0.37 150 0.39 
155 4.38 160 4.51 155 0.41 160 0.42 
165 4.64 170 4.77 165 0.43 170 0.45 
175 4.89 180 5.02 175 0.46 180 0.48 
185 5.17 190 5.32 185 0.49 190 0.51 
195 5.45 200 5.57 195 0.52 200 0.54 

p r e d i c t i o n  o f  t h e  a p p r o x i m a t i o n  b e c o m e s  v a l i d  fo r  th i s  i n t e r m e d i a t e  t i m e  in te rva l .  

S u c h  a b e h a v i o u r  m i g h t  b e  e x p e c t e d ,  s i n c e  f o r  l o n g e r  t i m e  the  s ing le  p a r t i c l e  

m o t i o n  is n e a r l y  u n c o r r e l a t e d  a n d  t h u s  th i s  a s s u m p t i o n  b e i n g  i m p l i c i t l y  m a d e  

fo r  t h e  V i n e y a r d  a p p r o x i m a t i o n  ho ld s .  T h e  b e h a v i o u r  o f  t h e  c o m p l e t e  Gd(r, t) 
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Fig. 1. Mean square displacement of 
pairs of particles initially in the first 
coordination shell as a function of time 
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in the range 0 <  r/o-<4.5 is illustrated for different times in Fig. 3 where addi- 
tionally the Vineyard convolution is displayed for comparison. We see from the 
plots that the deviations of the MD generated functions from the Vineyard 
functions remain also for the larger separations. Later we shall see that the range 
of large r, i.e., small wave vectors k, cannot correctly be predicted by such an 
approximation. 

4. The present convolution approximation for Gd(r, t) 

4.1. General considerations and pair diffusion 

The results obtained in Sect. 3 indicate that the Vineyard approximation fails to 
describe the short time behaviour of Gd (r, t) for an intermediate range of separa- 
tions. The reason for this is naturally the nonseparability of the one particle and 
the collective motion in a dense system. Both types of motion are governed by 
the influence of the cage formed by neighbouring particles. This effect has to be 
accounted for in order to achieve a successful prediction of the "exact" Gd 
function. An illustrative way of indicating the influence exercised by the "cage" 

Fig. 2. Height of the first and the second 
peak of Ga (r, t ) as a function of time. The 
heights are normalized by those of the 
static pair correlation function g(r). Lines: 
MD; points: Vineyard approximation 
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Fig. 3. Ga(r, t) as a function of the separation r for six time points: 0.1 ps, 0.3 ps, 0.5 ps, 0.7 ps, 1.1 ps. 
1.3 ps. State point 1. Lines: Vineyard approximation; crosses: MD 
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is the computation of the mean square diplacement of single particles and pairs 
of particles. It suffices here to restrict the discussion to pairs which are initially 
within the first coordination shell. The results for the motion of pairs of particles 
[9] may be summarized as follows: 

(i) for short times, 0 < t < 0 . 3  ps, the MSD and the halved MSDP are not 
distinguishable; 

(ii) significant departures of the MSDP (halved) from the MSD appear after 
0.3 ps and persist for long times (>2  ps). 

In other words the particle motion at initial times is so strongly localized in the 
"cage" that cross correlation between pairs or groups of particles vanishes nearly 
completely. We demonstrate this by Fig. 4 in which the cross term of the MSDP 
is displayed as a function of time [9]. It is immediately seen that there are no 
cross contributions for t < 0.2 ps and that the CTP is significantly different from 
0 for t > 0.4 ps We see the connection with the decay of the first peak in Gd 
plotted in Fig. 2: the decay of the latter in time resembles precisely the growth 
of the CTP for the initial time period, 

The improvement of the convolution approximation is now easy to establish: 
rather than using the MSD for the Gaussian function in relation (2) we employ 
the CTP for short times and half the MSDP for long times. For the intermediate 
region, we have chosen a linear combination of both: 

27r d2 - - 3 / 2  

^ Ds C T P - ~  MSDP 

(3) 

(3a) 

where Ds denotes the self-diffusion coefficient, Dp denotes the diffusion coefficient 
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Table 3. Self-, pair- and cross-diffusion coefficient for the state points 1 and 2 

State point D s x 105/cm 2 s - l  Dp x 105/cm 2 s -1 D c x 105/cm 2 s -a (D S-�89 x 105/cm 2 s -1 

1 3.51 a (3.47) b 6.01 (6.0) 0.64 (0.52) 0.51 (0.47) 
2 2.65 (2.50) 4.51 (4.35) 0.51 (0.42) 0.40 (0.33) 

a From the present  calculations determined by the mean  square displacements at larger times 
b Values in parentheses from [9] determined by the corresponding mean  square displacements at 

larger times and the time integral over the velocity correlation functions 

of pairs and Dc denotes the cross-diffusion coefficient. The values for Ds, Dp and 
Dc have been determined by the corresponding mean square displacements at 
large times and by the time integral over the velocity correlation functions [9]. 
These values are tabulated for both states in Table 3. Note that (d 2) in Eq. (3a) 
behaves similarly as the CTP for short times and exactly like half the MSDP for 
large time. For short times the weighting quotients, Ds/D~ and D~/Dp, ensure 
that the right hand side terms of Eq. (3a) are of the same order of magnitude. 
We have made this difference equal to zero when unphysical, negative values 
occurred. However, for larger times, where all the three mean square displace- 
ments are of linear form, the slope of (d 2) equals 6 �9 (Ds-  D~) which is by 
definition equal to 3Dp [9] as it should. 

4.2. Results for Gd(r, t) 

The convolution approximation based on relation (3) is compared with the 
machine results for the first maximum of Gd at the given states in Figs. 5 and 6. 
It is clear from these figures that the approximation holds equally well for both 
thermodynamic states. The comparison of the full Gd-Curves in the range 0 < 
r~ or < 4.5 can be made for state 1 in Fig. 7, where Gd (r, t) and the approximation 
have been plotted for 6 different time points. Small deviations become apparent 
for shorter times, but this is expected for reasons which will be discussed in Sect. 
5. Our convolution approximation describes the machine results much better than 
the Vineyard approximation which is illustrated in Fig. 8, where both convolutions 
are compared with the MD functions for two very different times. So we might 

0"8f ~ 0,6 

0.4 
state point 1 

0.2 
tips O r I I I F I I I p_ 0 0.2 0,4 0.6 0.8 1.0 1.2 1.4 

Fig. 5. As in Fig. 2, but  the points are the results of  the 
present convolution approximation.  State point 1 
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Fig. 6. As in Fig. 5, but for state point 2 
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expect that the Fourier transform and finally the dynamic structure factor obtained 
by this method is in good agreement with direct MD results. 

4.3. Comparison of the dynamic structure factor computed via the present 
approximation and by inversion of the directly evaluated intermediate scattering 
function 

To test furthermore our present convolution against direct MD data, we have 
computed the dynamic structure factor S(k, to) for a few k-values larger than 
4o --1. For illustration of the chosen wave vectors, we have plotted the static 
structure factor S(k) for state 1 obtained by the Baxter method in Fig. 9. 

S(k, to) was calculated via the following routes: 

(i) Evaluation of the static pair correlation function g(r) by MD. Extension of 
g(r) to large r of about 6or using the Baxter technique [4]. Calculation of 
Gd(r, t) by the present convolution for the (r, t) range: 

0 < r < 6 c r  

0 <  t < 4 p s  

Fourier transformation of Ga with respect to r by FFT. Summation of t~a (k, t) 
and the Fourier transform of Eq. (2), (~AU(k, t): 

asGAU(k,  t)  = exp(-~k2(r2)) 

for the chosen k-values. Fourier inversion of this time correlation function 
with respect to t yields finally S(k, to). 

(ii) Direct evaluation of the intermediate scattering function F(k, t) for these 
k-values by MD [10]. Fourier transformation of F(k, t) with respect to time 
then gives immediately S(k, to). 

S(k, to) determined by these two methods is plotted as a function of the frequency 
for four k-values in Figs. 10 and 11. The agreement is very good in all cases 
showing that our convolution approximation is suitable for such inversion pro- 
cedures, at least for k-values larger than 4zr -1. 
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5. Discussion and conclusion 

We have proposed a Vineyard type convolution approximation, which predicts 
the machine results for Ga (r, t) reliably in the range of 0 < r/tr < 5 and 0 < t < 3 ps 
for liquid-like densities of a pure fluid. Our approximation is valid in this (r, t) 
range and should not be used for much larger times and separations. Particularly 
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in the hydrodynamic region, this type of convolution cannot lead to reasonable 
results, as the hydrodynamic behaviour of S(k, o~) and Ss(k, o~) is completely 
different ([2], pp. 226, 238). 

We emphasize, however, that the computations required for the present approxi- 
mation are negligibly small compared with those necessary for a direct determina- 
tion of  S(k, (o) or Ga(r, t). The CTP and the MSDP can be evaluated with small 
particle numbers of 108 and 256, and these calculations are of  the same kind as 
those of  a mean square displacement of single particles. Moreover, when the 
data of the CTP given in Table 2 are used, no computations at all have to be 
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performed to evaluate (d,  2) (Eq. 3a). The short time form of the CTP is nearly 
identical for the considered thermodynamic states, although the self-diffusion 
coefficients differ appreciably. So we may use these data for the whole liquid 
range of Lennard-Jones (LJ) systems. Note that in Eq. (3a) only the short-time 
behaviour of the CTP is exploited. For larger times, the MSDP determines the 
time behaviour of Eq. (3a). As the latter is essentially linear, we need only the 
slope of that function (compare Fig. 1). This slope is given by the pair diffusion 
coefficient, Dp, of which the half value is to a good approximation 15% smaller 
than the self-diffusion coefficient (compare Table 3 and [9]). 

The self-diffusion coefficient of an LJ system has been determined by Heyes [11] 
over a larger region of states. Finally, the cross diffusion coefficient can be 
obtained by the difference between the singlet and the halved pair diffusion 
coefficient (compare Table 3, last column). So without any new computations 
the desired mean square displacement, (d2), of Eq. (3a) is available and together 
with a perturbation approach for g(r) - which takes little computer time - the 
dynamic structure can be obtained with sufficient accuracy. 

To demonstrate this, we have calculated S(k, to) for wave vectors as before and 
a thermodynamic state not investigated in this work using the above described 
method and the Baxter technique to generate g (r) by perturbation theory [3, 4, 12]. 
The comparison between these results and the directly computed S(k, to) is made 
in Figs. 12 and 13. Evidently these functions agree within about 10% for the 
chosen k-values larger than 40 --1 . 

In contrast to the Vineyard approximation, our convolution preserves the second 
moment [13] of S(lc, to) nearly exactly. We show this by decomposition of the 
approximated intermediate scattering function F(k,  t) into the self- and the 
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Fig. 12. S(k, to) computed directly by MD and by the method proposed in Paragraph 5 using the 
present convolution and the Baxter theory for g(r). State; 87 K; 1.418 g cm -3. Wave vectors: k= 
5.290- 1, k=6.48o-1 
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distinct term for short times: 

F( k, tshort)= Fs( k, tsho~t) + Fsd( k, /short) 

= exp[ - lk2(rt2)] + ~(k) exp[ - lkE(d2>] 

= exp[ - 1kE(r2>] + ~(k) exp[ - lk2(Ds/Dc)(c~>] 

where ic E> denotes the CTP and ~(k) denotes the Fourier transform of  g(r).  The 
MSDP term has been omitted, since the short time behaviour of  (d~> is essentially 
determined by (c2>. 

The second derivative of  F(k, t) at t = 0 yields the second moment of  S(k, to). 
Here the second derivative of the first term~gives v~ k 2, where Vo is the thermal 
velocity of  a particle, and the second derivative of the second term vanishes 
completely at t = 0, as the cross term of the particle velocities, (v ~ v~), is zero by 
definition [9]. The structure factor approximatedby our present convolution has 
therefore the fight second moment, D~k 2. As however the short time behaviour 
of Cad (r, t) is not exactly reflected by Eq. (3) (see Fig. 6), the higher order moments 
of  S(k, to) are surely not given exactly by our approximation. 

To include correctly these higher moments (fourth, s ix th , . . . )  of  S(k, to) one 
should use a memory function representation of the Fourier components of the 
local densities ps(k, t) and pa(k, t) [14]. This formal method gives results in good 
agreement with MD simulations for intermediate and larger wave vectors. 
However, such calculations are more complicated than the present one. They are 
not suitable to generate extended Gd(r, t) curves and do not allow a proper 
physical insight into the dynamical process (compare [15]). 

Our study is based on the assumption that the Gaussian model for Gsd(r, t) works 
well for the considered time period. This is not true for a certain intermediate 
time interval, where Q(r,  t) shows non-Gaussian behaviour [13]. Part of the 
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discrepancies between the calculated S(k, to ) and the MD generated one originates 
presumably from the use of the Gaussian form for Gs(r, t) and Gsd(r, t). A 
straightforward computation of these functions by MD.could throw more light 
on this. We plan to do calculations of this kind in a later study. 
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